Kan Extensions of Institutions
نویسنده
چکیده
Institutions were introduced by Goguen and Burstall [GB84, GB85, GB86, GB92] to formally capture the notion of logical system. Interpreting institutions as functors, and morphisms and representations of institutions as natural transformations, we give elegant proofs for the completeness of the categories of institutions with morphisms and representations, respectively, show that the duality between morphisms and representations of institutions comes from an adjointness between categories of functors, and prove the cocompleteness of the categories of institutions over small signatures with morphisms and representations, respectively. Category: F.3, F.4
منابع مشابه
Kan Extensions of Institutions
Institutions were introduced by Goguen and Burstall 8, 9, 10, 11] to formally capture the notion of logical system. Interpreting institutions as functors, and morphisms and representations of institutions as natural transformations, we give elegant proofs for the completeness of the categories of institutions with morphisms and representations, respectively, show that the duality between morphi...
متن کاملLeft Kan Extensions Over !-Cat
An existing procedure to compute left Kan extensions over the ground category Set also computes left Kan extensions over the ground categories Cat, 2-Cat, n-Cat for any n and indeed !-Cat. Therefore extension data struc-tured in this manner already can make use of the left Kan extension notion of a best possible approximation. Examples include systems of labeled transition systems and certain h...
متن کاملKan Extensions for Program Optimisation Or: Art and Dan Explain an Old Trick
Many program optimisations involve transforming a program in direct style to an equivalent program in continuation-passing style. This paper investigates the theoretical underpinnings of this transformation in the categorical setting of monads. We argue that so-called absolute Kan Extensions underlie this program optimisation. It is known that every Kan extension gives rise to a monad, the code...
متن کاملUsing Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories
The aim is to apply string-rewriting methods to compute left Kan extensions, or, equivalently, induced actions of monoids, categories, groups or groupoids. This allows rewriting methods to be applied to a greater range of situations and examples than before. The data for the rewriting is called a Kan extension presentation. The paper has its origins in earlier work by Carmody and Walters who ga...
متن کامل2 3 Ju n 19 99 Using Automata to obtain Regular Expressions for Induced Actions ∗
Presentations of Kan extensions of category actions provide a natural framework for expressing induced actions, and therefore a range of different combinatorial problems. Rewrite systems for Kan extensions have been defined and a variation on the Knuth-Bendix completion procedure can be used to complete them – when possible. Regular languages and automata are a useful way of expressing sets and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. UCS
دوره 5 شماره
صفحات -
تاریخ انتشار 1999